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A universal circuit for studying
chaotic phenomena

By LEoN O. CHUA, LADISLAV P1VKA AND CHAT WAH WU

Electronics Research Laboratory and Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA 94720, USA

In this paper, an overview of the results on an autonomous chaotic electronic cir-
cuit, called Chua’s oscillator, is given. Along with brief descriptions of numerical and
analytical investigations on Chua’s oscillator, we present some of its potential appli-
cations. The significance of the oscillator for the study of general dynamical systems
is discussed.

1. Introduction

Many natural phenomena can be described in terms of models exhibiting regular
oscillatory, or periodic, behaviour. In physics, a so-called state space of variables
can be used to interpret trajectories describing the motion. It is natural to describe
such oscillatory motions with as simple a model as possible while preserving all the
essential properties of the physical systems being described. In electrical engineering
Van der Pol’s oscillator proved to be a classic, simple paradigm for the description
of oscillatory phenomena involving only two state variables.

During the last 30 years, a new important type of behaviour—chaotic motion—
has been identified. It turns out that at least three state variables are necessary to
model such behaviour in autonomous systems, i.e. systems in which no external force
is affecting their behaviour.

In 1963, the meteorologist E. N. Lorenz proposed the first three-dimensional au-
tonomous system of equations (Lorenz 1963) exhibiting chaotic behaviour, which has
since become a subject of intense research. It was not until 20 years later that a real
physical object was discovered (Chua 1992), and later built (Zhong & Ayrom 1985),
which is capable of reproducing chaotic phenomena known from the theory. Chua’s
circust and its later generalization—Chua’s oscillator (Madan 1993)—has since be-
come the most widely studied paradigm for different types of dynamical, especially
chaotic, behaviours. Figure 1 shows a diagram of the oscillator, whose state equations
are given by

dv1 1 )

T a[G(Uz —v1) = f(v1)],

dv 1 .

5 = g (Gl —v2) +ig), (1.1)

2

dis 1 ,

TG —Z('Uz + Rois), )
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Figure 1. Circuit diagram of Chua’s oscillator.
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Figure 2. Period-doubling route to chaos. (a) Period-1 orbit. (b) Period-2 orbit. (¢) Period-4
orbit. (d) Double-scroll attractor.

where G = 1/R, and f(v1) = Gyvy + 5(Ga — Gy){|v1 + E| — |v1 — E|} is the v-i
characteristic of the nonlinear resistor Ny with a slope equal to G, in the inner region
and G}, in the outer region. By setting Ry = 0 we obtain the original Chua’s circuit.

By a change of variables, the state equations of Chua’s oscillator (1.1) can be
transformed into the following dimensionless form:

dz d dz
T —kaly—z—f@), S=k@-y+2), o =k(-By—7z),
dr dr dr (1.2)

f() = bz + 3 —b){lz +1] — |z 1]},
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0
-0.01 y

Figure 3. Chaotic attractors from Chua’s oscillator (see table 1). (a) Attractor no. 4. (b)
Attractor no. 18. (¢) Torus attractor no. 22. (d) Attractor no. 28.

where

r=wv/E, y=wv/E, z=1i3(R/E),
a=Cy/Cy, B=R*Cy/L, ~v=RR\Cy/L,
k=1 if RCy > 0,
k=-1 if RCy, <0.

(1.3)
a=RG,, b=RGy, 7=t/|RCs| and

Note that there are more than one set of circuit parameters (Cy, Cs, etc.) that maps
onto the same dimensionless equations (1.2). Furthermore by selecting the constant
RC5 we determine how ‘fast’ the real circuit is in comparison with the dimensionless
System.

The history of the inception and evolution of Chua’s circuit can be found in the
review papers, The genesis of Chua’s circuit (Chua 1992) and Chua’s circuit: ten
years later (Chua 1994), where an overview of the most important recent results is
given along with extensive bibliographies.

In the present review we will follow the traditional path of development, from
numerical experiments, through analytical results, to practical applications. We omit
the experimental aspects since they are covered in detail in Kennedy (this volume)
where also some definitions of basic concepts in the theory of dynamical systems,
used throughout this paper, can be found.

2. Dynamical phenomena via numerical simulations

The chaotic nature of Chua’s circuit was first observed experimentally by Zhong &
Ayrom (1985). Because of its characteristic structure, the observed strange attractor
was named the double-scroll Chua’s attractor (see figure 2d). Several other chaotic
attractors have since been observed from Chua’s oscillator. Figure 3 shows a selection
of four other chaotic attractors from the rich gallery summarized by table 1 in which
scaled parameters, corresponding to equation (1.2), are used.

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

990°0— 0 L¥00°0 0'T— 86266810000 6%S68TIIF60°0— L¥PC9LCEL000 880696000070 GS6C6.LLESO T— 8C
209°0— G99G00°0— 0 O'T— S9T120LZ100°0 ¥L90€6CT1S0— ¥PCISC6¥9I0°0  C8¥S9TET00°0 661199€L00°C— LC
9L3°0— 0 Zv0°0 01— ¥8V9LTETIC0— FITICEIPLE60°0— L0O99ETEL6C 0  SFPOSTICHO0 GICEE0LTEL T— 9¢
SP1°0— 0 001 386°0— 920'1T— 00 00700001 0°008T 514
gy 0— 0 0 01— 96660 T— CLESG8°0— GETC868°0— GETITL G6 VIVIVICL e
990°0— 0 0 01— 96660 T— CLESSES 0— C686LLV6°0— GSLTL9°99 c0s°¢ €C
1€ T— 0 0 0T 67SLE8C000'T— 69ETECG666 0— S8EELEV/ITEC0—  9TIVGTLRL GTIVI— 8CG0LLS CTOSY — [44
86G°0— 0 600 01— 96660 T— CLESSS 0— 960.L80GL°0— 981¢219°¢S 1260L0°€T I4
) CLT— 1¢0°0— 0 01— 96660 T— GLESSS 0— GL9€E0C T— T€800L°GL 6816£6°GE 02
W L9°C— 0 619¢8°0 O'I— 96660 T— GLESS8 0— YCCI9T I— 889670 €L 708S61°LE 61
W. VL= 0 €60 01 86°0— V'c— Ger'e— (TR 0°GL— ST
. eV — 0 9IT0 01T LGSTYIL 0— LGSCYVT 1— 00 8G°8¢C 9°¢1 LT
M 69— 0 10T 0T v'c— 86°0— Ger'e— GC'1¢ 0°G6L— 91
m GGL0— 0 1200 O'T LGSCYIL 0— LGSTYT 1— 00 0¢— G8980° 7 — a1
< 990°0— 0 0 01— 96660 T— GLESSY 0— 80LGEVE60— TL96ST 7S 900% 71
.Lm €6'T— 0 G900 O'T Z8IPSEETCI 0— 9PLOECLOIST I— ¥6C0¥V.LFP00— T619299.68°01 €L976C36LS°9 ¢l
DM ISy 1— 0 2620 0T 9LVELGLIVT T— CTELI6CIS0L0— €6ETEITS000  GT6SEETEL0CT ST¥8ICTIST'8 Gl
~ T,LG°0— 0 9200 O'T— L1L6Y°0— 0S126C' T -PIISPEVITIC 0— 826¥S0¥L80°0— 8.89GCGE9E T— IT
S v0'0— 0 ¢100 0T GG8LILYV 0— LT8069T1°0 89669620 0— €L09€T10°0— PISTOC 1— 01
M TIT°0— 0 GE0'0 O'T— 6S6I0TTRC00— 8L68TELIPCE 0— 0L0E6SSTET'0  0061¥LSTIO0 GCSOT0P8IS I— 6
C. TL0°1T— 0 7710 01 T02L6C6°0— 9GCT0SC— 8S80STI000— GEIPC9 € — 6.6868 7 — 8 —
S 8¢ 91— 0 ¢¢'T 01— 96660 T— CLEGSGR 0— TCLLILR C— 8617¢°L0T LEOT'EVT L ww
3 ¢8¢°0— 0 I80°0 0T LG8CYTL 0— LGSCYT 1— 00 190G 1— 16169°9— 9 jus
L6 T— 0 89¢'0 0'T  68769SG08T'0  €T0CTTLYIL C— 08L9SGT6G8°0— 8SLG0L66L0°TC 7992¢00160L°¢ g M
60°0— 0 2200 0'T— GLG6699Z9T0°0— TGTITE0LILI0— L9G0G8LGS0'0  G6I8EECLO00 8YET69TEET T— 14 g
LL9°0— 0 ¢100 01— 9€¥8C1S 0— 9I¥8IC T 9YEVICES 0— G61L0E60°0— 906857 1— S L
28¢0— 0 €00 0T— EV668ISTF00— L06TES8EFC0— CTOTIGSPLST' 0 SP8ESTISTIO 0 L89G€S06SS T— 4 cmu
698 C— 0 6L2°0 0T 60CTIISPCTL 0— 9S6ITIPSET I— 6¥96€L09T0°0  ¥SOS6IE06L VI £67806STSE 6 T o8
sjuaouodxa aoundeAr] Y qQ D L ol 0 ‘ou I030RI}YR Tm
0 =
© L0ID]12S0 §,DNY,) UL §4030DLYID [0 SINIDA UPUWDIDS T O[QE], X
v 40 X 40
% ALIIOOS SNOILDVSNVYL C\w ALIIOOS SNOILDVSNVYL
TVAOY dH L 1vDIHdOSOTIHd v TVAOY dH L 1vDIHdOSO1IHd


http://rsta.royalsocietypublishing.org/

A
A

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
\
)

THE ROYAL A

A

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

A universal circuit for chaotic phenomena 69
4 (@) 2
’ 1
0
z 0 z -1
-2
2 i

= 04 4 04

2 020
04 -0.2
* 3 7706 Y * 2 304 Y

Figure 4. Examples of (a) homoclinic, and (b) heteroclinic trajectories from Chua’s oscillator.

(a) Homoclinic and heteroclinic orbits in Chua’s oscillator

Closely related to the appearance of chaotic behaviour in dynamical systems in
general are the so-called homoclinic and heteroclinic trajectories. A homoclinic tra-
jectory is one whose limit point in both forward and backward times is the same
saddle-type equilibrium point. On the other hand, two different equilibrium points
are the limit points in forward and backward time, respectively, for a heteroclinic
trajectory (see figure 4).

(b) Routes to chaos

(i) When the parameter R is changed, an equilibrium point loses its stability
and a stable limit cycle emerges through an Andronov—Hopf bifurcation when one
of the parameters (e.g. the resistance R) is changed. As the parameter is changed
further, the stable limit cycle eventually loses stability, and a stable limit cycle of
approximately twice the period emerges, which is usually referred to as a period-2
limit cycle. Similarly a period-4 limit cycle appears after the period-2 limit cycle
loses its stability. This bifurcation occurs infinitely many times at ever-decreasing
intervals of the parameter range which converges at a geometric rate, determined by
the well-known Feigenbaum constant, to a limit (bifurcation point) at which point
chaos is observed. This is called a period-doubling route to chaos, an example of which
is shown in figure 2.

(il) Torus breakdown route to chaos is one in which the system undergoes several
Andronov—Hopf bifurcations. After two Andronov-Hopf bifurcations, we obtain a
toroidal attractor. At the third Andronov—Hopf bifurcation, chaos is likely to appear.
Both torus breakdown route to chaos and period-doubling route to chaos can be
conveniently interpreted and explained in terms of the characteristic multipliers of
the corresponding Poincaré map (Duchesne 1993).

(iii) Intermittency route to chaos is the phenomenon where the signal is virtually
periodic except for some irregular (unpredictable) bursts. In other words, we have
intermittently periodic behaviour and irregular periodic behaviour (Chua et al. 1993).

(¢) Period-adding bifurcations
In this phenomenon, windows of consecutive periods are separated by regions of
chaos. In other words, as the parameter is varied, we obtain a stable period-n orbit,
n=1,2,..., followed by a region of chaos, then a stable period-(n+1) orbit, followed
by chaos, and then a period-(n+2) orbit and so on. Some numerical and experimental
results with bifurcation diagrams are given in Pivka & Spény (1993) and Chua et al.
(1993).

Phil. Trans. R. Soc. Lond. A (1995)
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(d) Coezistence of attractors

Coexistence of attractors is an interesting phenomenon in which the interaction of
attractors can give rise to different dynamical phenomena described in the following
two subsections. Recently, a coexistence of three distinct chaotic attractors has been
reported (Lozi & Ushiki 1991), when two asymmetric attractors coexist with a sym-
metric one. Some other coexistence phenomena, including point attractors, periodic
attractors, and chaotic attractors, can be found in Wu & Pivka (1993).

(e) Chaos—chaos intermittency and 1/f noise

It has been known that interaction between chaotic attractors can give rise to
intermittency: random switching process between attractors after long periods of
‘laminar phases’, when the trajectory stays near one of the attractors. A charac-
teristic statistical property of the chaos-chaos type intermittency is the slope of its
power spectrum in the low-frequency region. Such a property has also been observed
(Anishchenko et al. 1994) in Chua’s circuit for parameter values near the birth of the
Chua double-scroll attractor. The power spectrum was numerically found to follow
the law S,(w) ~ w=%, § = 1.1 £ 0.1, i.e. the graph on the double logarithmic scale
clings to the ideal 1/f line corresponding to § = 1. The 1/f spectrum has been
observed previously in many processes of different origin, e.g. the fluctuations of the
current in electron devices, the fluctuations of the Earth’s rotation frequency, the
fluctuation of the muscle rhythms in the human heart, etc., and has been found to
obey the above universal law. The intermittency phenomenon can be used as a 1/f
noise generator and can lead to a better understanding of the ubiquitous yet still
poorly understood 1/f phenomenon.

(f) Stochastic resonance from Chua’s circuit

The phenomenon of stochastic resonance (SR) is observed in bistable nonlinear
systems driven simultaneously by an external noise and a sinusoidal force. In this
case, the signal-to-noise ratio (SNR) increases until it reaches a maximum at some op-
timum noise intensity D which depends on the bistable system and on the frequency
of the external sinusoidal force. In the absence of a periodic modulation signal, the
noise alone results in a random transition between the two states. This random pro-
cess can be characterized by the mean switching frequency ws, depending on the
noise intensity D and the height of the potential barrier separating the two stable
states. In the presence of an external modulation imposed by the sinusoidal signal
Asin(wt), the potential barrier changes periodically with time. The modulation sig-
nal amplitude A is assumed to be sufficiently small so that the input signal alone
does not induce transitions in the absence of noise. A coherence between the modu-
lation frequency w and the mean switching frequency w, emerges when the system
is simultaneously driven by a periodic signal and a noise source. As a result, a part
of the noise energy is transformed into the energy of the periodic modulation signal
so that the sNR increases. This phenomenon is qualitatively similar to the classical
resonance phenomenon. However, unlike the classical circuit theory where one tunes
the input frequency w to achieve resonance in an RLC circuit, here w is fixed at
some convenient value and one tunes the noise intensity D to achieve SR.

In Chua’s circuit, the sk phenomenon can be observed (Anishchenko et al. 1993)
in conjunction with the chaos-chaos type intermittency (Anishchenko et al. 1994)
arising in a small vicinity of the bifurcation curve in the a—0 parameter space when

Phil. Trans. R. Soc. Lond. A (1995)
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two spiral attractors merge to form the double-scroll attractor. In this case, the SNR
of the amplified output signal is observed to be significantly greater than the SNR
of the input signal, a novel phenomenon which cannot be achieved with a linear
amplifier.

(g) Signal amplification via chaos

Apart from the stochastic resonance phenomenon described above, another mecha-
nism for achieving voltage gain (up to 50 dB has been demonstrated experimentally)
from Chua’s circuit has been discovered recently (Halle et al. 1992). The mechanism
of this voltage gain is different from that of stochastic resonance because the effect
is observed even when Chua’s circuit is operating in a spiral Chua’s attractor regime
far from the bifurcation boundary where stochastic resonance takes place.

(k) Antimonotonicity phenomenon

Antimonotonicity, concurrent creation and annihilation of periodic orbits, or in-
evitable reversals of period-doubling cascades, was shown to be a fundamental phe-
nomenon for a large class of nonlinear systems (Kan & Yorke 1990). Experimental
(Kocarev et al. 1993a) and numerical (Pivka & Spany 1993) evidence was given that
this phenomenon is typical for a wide range of parameters in Chue's circuit and
Chua’s oscillator, respectively.

(i) Chua’s circuit with smooth nonlinearity

Most of the studies on Chua’s circuit and Chua’s oscillator assume piecewise-
linear nonlinearity. Since the characteristics of nonlinear resistors in real circuits are
always smooth, a question arises as to whether the phenomena in piecewise-linear
and smooth models coincide. This question is approached in Khibnik et al. (1992)
by demonstrating that most phenomena from piecewise-linear Chua’s circuit (e.g.
the double scroll) carry over to the smooth model with a cubic polynomial for the
nonlinear function. Also most of the bifurcations (period-doubling, for instance) in
the smooth model appear to be similar to those in the piecewise-linear model (see,
for example, Zhong (1994), which also gives an implementation of a cubic polynomial
v—1 characteristic using analogue multipliers).

() Universality and self-similarity: two-parameter bifurcation studies

In the standard bifurcation scenarios described in the literature, usually only one
control parameter is changed. In physics, engineering, and other fields, however, one
often needs to control two or more parameters to obtain a broader view of the global
geometry. Here we mention two cases of self-similar and universal structures, one for
the autonomous and the other for the forced Chua’s circuit.

(i) Self-similar and universal structures in two-parameter study of transition to
chaos

Using the Poincaré map technique, the exact description of the system (1.1) can
be reduced to a two-dimensional map which, in turn, can be approximated by a one-
dimensional map (Chua & Tichonicky 1991) generally called Chua’s one-dimensional
map in the literature. Such an approximation is possible because of the strong dis-
sipation of the system which ‘flattens out’ the dynamics. This map happens to be
bimodal in certain parameter regions, which means that it has both a maximum and
a minimum on an interval which is mapped onto itself. The condition is responsible

Phil. Trans. R. Soc. Lond. A (1995)
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1 | | | |
0 2 4 6 8 10
WIW,

Figure 5. Devil’s staircase from the sinusoidally driven Chua’s circuit.

for the complicated structure of the boundary of chaos in a two-parameter bifurcation
diagram.

In a typical one-parameter bifurcation sequence, if we tune only one parame-
ter in Chua’s circuit, we usually see a typical period-doubling cascade, which ex-
hibits remarkable properties of quantitative universality (Feigenbaum 1979) and self-
similarity, namely, an interval encompassing regions of different dynamical regimes
reproduces itself under a change in scale by the universal factor 6 = 4.6692. ...

If we turn to a two-parameter study, we can no longer restrict ourselves to the
Feigenbaum scenario which is a codimension-1 bifurcation phenomenon. In Kuznetsov
et al. (1993) the construction of a binary tree of superstable orbits is performed for
the one-dimensional Chua’s map to show that beside the Feigenbaum critical lines,
the boundary of chaos contains an infinite number of codimension-2 critical points,
defined by a set of infinite binary codes. The topography of the parameter plane near
the corresponding critical points reveals a property of two-parameter self-similarity:
a two-dimensional structure of regions of different behaviour is reproduced under a
scale change along appropriate axes in the parameter space. These self-similar two-
dimensional patterns are universal (up to a linear parameter change) for all bimodal
maps, and depend only on the code of the associated critical point. Moreover, two
universal scaling numbers have been found for the two-parameter one-dimensional
maps, which are generalizations of the Feigenbaum number.

(ii) Dewil’s staircase from the driven Chua’s circuit

One of the remarkable properties of nonlinear oscillators is their ability to lock
onto certain subharmonic frequencies when driven by an external source of energy.
Associated with the phase-locking property is usually the appearance of ‘staircases’
of phase-locked states when the parameters are varied over certain range. The pic-
turesque name devil’s staircase is used to describe the intricate, often fractal, struc-
ture of such staircases. Figure 5 shows the devil’s staircase in Chua’s circuit obtained
by plotting the ratio of winding numbers and period numbers as a function of the
normalized forcing angular frequency (see, for example, Pivka et al. 1994). The self-
similar structure of the staircase tree and the devil’s staircase become apparent when
magnified pictures are drawn of the portions of the devil’s staircase.

Phil. Trans. R. Soc. Lond. A (1995)
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(k) Other dynamical phenomena from the driven Chua’s oscillator

Extensive computer simulations and physical experiments were performed in a two-
parameter study (Anishchenko et al. 1995) to describe several types of transition to
chaos in the non-autonomous Chua’s circuit. Also in an experimental and numerical
study (Itoh & Murakami 1994) of Chua’s oscillator some new phenomena—ifrequency
entrainment of chaos, period-preserving bifurcations—have been reported, along with
many other phenomena previously observed from different oscillators.

3. Analytical results on Chua’s oscillator

The first proof of the chaotic nature of the double-scroll attractor in Chua’s circuit
was given in Chua et al. (1986) by establishing the existence of a homoclinic loop
of the saddle-focus at the origin, and by applying the Shil’'nikov theorem. Another
proof which also makes use of the Shil’'nikov theorem, applied to the double-hook
attractor, was given by Silva (1993). In addition to these proofs, many deep math-
ematical analyses of Chua’s circuit and Chua’s oscillator have been published. We
now summarize some of these analytical results.

(a) Global bifurcation analysis

An in-depth analysis of the global 2-parameter bifurcation structures of Chua’s cir-
cuit was made by Komuro et al. (1991) in terms of homoclinic, heteroclinic, and peri-
odic orbits. By using the normal form theory, developed earlier for three-dimensional,
three-region, piecewise-linear systems, the following results were obtained:

(i) The parameter sets which give rise to homoclinic and heteroclinic orbits (ho-
moclinic and heteroclinic bifurcation sets) were found to be all connected to each
other via only one family of periodic orbits.

(ii) The structure of the windows of this family essentially determines the global
structure of the periodic windows.

(iii) The bifurcation analyses were accomplished by deriving first the relevant
bifurcation equations in exact analytic form, thus making it possible to construct
high-resolution bifurcation diagrams without using numerical integration formulas.

(b) One-dimensional Chua’s map

The original Chua’s one-dimensional map introduced in Chua et al. (1986) has
been extensively investigated numerically (Chua & Tichonicky (1991) and analyti-
cally (Brown 1993; Sharkovsky et al. 1993; Misiurewicz 1993; Maistrenko et al. 1993).
Using the generalized framework developed by Brown (1993), Misiurewicz (1993) has
investigated maps of the real line into itself obtained from the modified Chua’s equa-
tion. For a large range of parameters, Misiurewicz found the existence of invariant
intervals as well as invariant sub-intervals on which the associated Chua’s circuit is
unimodal and resembles the well-known logistic map. Moreover, this map is found to
have a negative Schwarzian derivative, implying the existence of at most one attract-
ing periodic orbit. Moreover, Misiurewicz has proved that there is a set of parameters
of positive measure for which chaos occurs.

(¢) Unaversality in cycles of chaotic intervals

The order of the bifurcation sequence in piecewise-linear maps is different from
that of smooth maps. In the case of the piecewise-linear map associated with the
Chua’s circuit with time delay (Sharkovsky 1993), Maistrenko et al. (1993) have

Phil. Trans. R. Soc. Lond. A (1995)
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found that when a period-n point cycle loses its stability, a ‘rigid’ period-doubling
bifurcation occurs which leads to the emergence of not point cycles but interval
cycles of double period having chaotic trajectories. This is followed by an inverse
period-doubling bifurcation, i.e. interval cycles of period 2n are merged pairwise,
giving birth to a period-n interval cycle. Finally, in the next bifurcation all intervals
of interval cycles will merge into the full interval cycle I = [0, 1]. In this case, there
are no subintervals of I which recur periodically under the map of f. Among many
elegant mathematical properties concerning interval cycles, Maistrenko et al. (1993)
has derived two universal constants analytically, and in explicit form. This result is
most surprising since the well-known Feigenbaum universal constant was calculated
only numerically.

(d) Global stability and instability of Chua’s oscillator

Recently, Leonov et al. (1993) has investigated Chua’s oscillators as a feedback
control system and derived a frequency-domain criterion for global stability and
instability. This analytical study has led to a new version of the generalized Kalman’s
conjecture.

(e) The double-horseshoe theorem

Using a new geometric model of Chua’s circuit, Belykh & Chua (1993) have pre-
sented an analytical study of a new type of strange attractor generated by an odd-
symmetric three-dimensional orbit at the origin. This type of attractor is intimately
related to the double-scroll Chua’s attractor. They have proved rigorously that the
chaotic nature of this attractor is different from that of a Lorenz-type attractor, or a
quasi-attractor. In particular, this attractor has the geometry of a double horseshoe.
For certain nonempty intervals of parameters, this strange attractor has no stable
orbits. Unlike other known attractors, the double horseshoe attractor contains not
only a Cantor set structure of hyperbolic points typical of horseshoe maps, but un-
stable points (i.e. stable in reverse time) as well. This implies that the points from
the stable manifolds of the hyperbolic points must necessarily attract the unstable
points.

(f) Synchronization, trigger wave, and spatial chaos

Several criteria for synchronizing two mutually coupled Chua’s circuits operating
under chaotic regimes are derived in Belykh et al. (1993) and Wu & Chua (1994).
For a chain of Chua’s oscillators, analytical results couched in terms of a moving
coordinate system have been derived which guarantee the existence of heteroclinic
orbits (Nekorkin et al. 1993). This analytical study is highly significant because it
proves, among other things, the presence of a trigger wave along the chain. The
proof of the existence of heteroclinic orbits represents a major breakthrough since it
is generally extremely difficult, if not impossible, to derive such analytical results. In
addition to trigger waves, this investigation also proves the existence of spatial chaos
along a finite chain of Chua’s oscillators.

(9) Fine structure of the double-scroll Chua’s attractors

Using the theory of confinors Lozi & Ushiki (1991, 1993) have developed an ana-
lytical approach, in sharp contrast to numerical integration methods, for examining
the fine features of various Chua’s attractors. The keystone of the original definition
of confinors is that very often, changes in the shape of experimentally observed sig-
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nals are more significant in characterizing the phase portrait, than any topological
change between chaotic attractors. The theory of confinor takes into account the
‘shape’ of the signals, and is capable of modelling both transient and asymptotic
regimes. Applying this unique approach to Chua’s equation, Lozi & Ushiki (1991)
have discovered the co-existence of three distinct double-scroll Chua’s attractors in
close proximity of each other for the same value of parameters. Without a precise
knowledge of initial conditions, which the confinor theory can supply, it would be
virtually impossible to pick these three attractors apart. This explains why in spite
of the rather extensive numerical and experimental works of many researchers on
Chua’s circuit over the past 10 years, no one has ever observed the simultaneous
existence of three chaotic attractors.

In addition to this discovery, Lozi & Ushiki (1993) have also provided the most
precise characterizations of the structure of the double-scroll Chua’s attractors via
an exact two-dimensional Poincaré map. Moreover, they have discovered some very
unusual bifurcation phenomena which are distinct from the usual period-doubling
cascades. Since these results are all highly original and robust, they can be used
as a guide for characterizing strange attractors of other chaotic systems, thereby
demonstrating yet another application of Chua’s circuit as a universal paradigm for
chaos.

(k) The global unfolding theorem

It is shown in Chua (1993) that the state equation of Chua’s oscillator, or unfolded
Chua’s circuit, is topologically conjugate (i.e. equivalent) to a 21-parameter family of
continuous, odd-symmetric, three-region, piecewise-linear equations in R3. The cor-
responding circuit is uniquely determined by seven parameters and it is shown that
no circuit with less than seven parameters has this property. The significance of the
unfolded Chua’s circuit is that the qualitative dynamics of every autonomous third-
order system with one continuous, odd-symmetric, three-segment, piecewise-linear
function can be mapped into this circuit, thereby making their separate analyses un-
necessary. This unification reduces the investigation of the many heretofore unrelated
publications on chaotic circuits and systems to the analysis of only one canonical cir-
cuit. Recently, Wu & Chua (1995b) have extended the global unfolding theorem in
three ways. First, the vector field can be of arbitrary dimension. Second, the vector
field need not be odd-symmetric. Third, the vector field need not be piecewise-linear.
In particular, it was shown that the n-dimensional Chua’s oscillator is topologically
conjugate to almost all vector fields in Luré form.

(i) Chaos from a time-delayed Chua’s circuit

A generalization of Chua’s circuit to infinite dimensions can be obtained by replac-
ing the parallel LC ‘resonator’ by a lossless transmission line, terminated by a short
circuit. The resulting ‘time-delayed Chua’s circuit’ whose time evolution is described
by a pair of linear partial differential equations with a nonlinear boundary condition.
If we neglect the linear capacitance across the Chua diode which is described by a
non-symmetric piecewise-linear vg—ir characteristic, the resulting idealized ‘time-
delayed Chua’s circuit is described ezactly by a scalar nonlinear difference equation
with continuous time, which makes it possible to characterize its associated nonlinear
dynamics and spatial chaotic phenomena.

From a mathematical view point, circuits described by ordinary differential equa-
tions can generate only temporal chaos, while the time-delayed Chua’s circuit can

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

/,//’ \\
'
{ A

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\
/%

p

THE ROYAL A

a

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

76 L. O. Chua, L. Piwvka and C. W. Wu

generate spatial-temporal chaos. Except for stepwise-periodic oscillations, the typical
solutions of the idealized time-delayed Chua’s circuit consist of either weak turbu-
lence, or strong turbulence, which are examples of ‘ideal’ (or ‘dry’) turbulence. In
both cases, we can observe infinite processes of spatial-temporal coherent formations
(Sharkovsky 1993). Also, after deriving the corresponding one-dimensional map, it is
possible to determine without any approximation the analytical equation of the sta-
bility boundaries of cycles of every period n. Since the stability region is nonempty
for each n, this provides a rigorous proof that the time-delayed Chua’s circuit exhibits
the period-adding phenomenon where every two consecutive cycles are separated by
a chaotic region (Sharkovsky et al. 1993).

() Dynamics of Chua’s circuit in a Banach space

Blazquez & Tuma (1993) derived generalized theorems of the Shil’'nikov type for
evolution equations in Banach spaces of infinite dimension. These theorems can be
applied to the Chua equations in infinite dimension for a description of the behaviour
of subsystem of solutions in a neighbourhood of double homoclinic orbits to the same
saddle-focus point.

(k) Future problems

Shil’'nikov (1993) summarizes some of the rigorous results on Chua’s circuit and
discusses the differences between so-called ‘stochastic’ attractors of the hyperbolic
and Lorenz type, which are amenable to study by statistical methods, and ‘quasi-
stochastic’ attractors found in Chua’s oscillator whose behaviour is much more com-
plicated. It is pointed out that although a complete description of the dynamics and
bifurcations in the Chua equations is impossible, quasi-attractors could be studied
by adding a small noise to ‘spread’ the stable periodic orbits as well as structurally
unstable periodic orbits.

An extension of the present results to infinite dimensions is nontrivial and provides
opportunities for discovering many essentially new effects, e.g. coexistence of ‘large’
attractors, periodic, quasi-periodic, and ‘small’ strange attractors of a very different
nature. There are also many unsolved mathematical problems associated not only
with Chua’s oscillator but also its higher-dimensional generalizations to CNN arrays
of such oscillators (see, for example, Pérez-Mufiuzuri et al., this volume).

4. Applications

Not a long time ago, chaotic phenomena were recognized as a curiosity phe-
nomenon, interesting and worth studying only from an academic point of view,
without a prospect of immediate practical applications. Most practically oriented
studies were directed toward avoiding chaos as a phenomenon which is undesirable in
real-life applications. Following some breakthrough discoveries, especially of chaotic
synchronization (Pecora & Carroll 1990) and stochastic resonance (see, for exam-
ple, Anishchenko et al. 1993) phenomena, this attitude changed dramatically. In this
section we outline some potential applications in which chaotic behaviour plays an
essential role.

(a) Secure communication via chaos

The key concept in the application to secure communication is that of synchro-
nization. Given two (or more) nonlinear systems

@y = fr(xr), xx€R", k=12,...,N
Phil. Trans. R. Soc. Lond. A (1995)
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we are interested in conditions leading to the synchronization of the solutions, i.e.
the convergence (z; — x;) — 0, as t — oo, for | # j. For the special case of linear
coupling of two systems

&= fi(x), y=rfoly)+A@-y), A=dageé,...,6)", z,yecR"

some general conditions are known (Kocarev et al. 1993b) to ensure synchronization.
To ensure synchronization in another way, Pecora & Carroll (1991) suggested a drive-
response concept as follows.

Consider an n-dimensional autonomous system with the state equation,

&= f(z),

and divide the system into two parts, the driving subsystem D, and the response
subsystem R: . )
&p = g(xp,Tr), Tr = h(xp,ZR).

By adding an identical copy of the response subsystem, we obtain
&p = g(zp,xr), @R =h(zp,zr), xR = h(zp,2'r).

Then for xgr and x'r to synchronize it is necessary that the conditional Lyapunov
exponents (depending on xp) be all negative (Pecora & Carroll 1990). Several ap-
proaches have been suggested so far to use the synchronization effect for data trans-
mission by using Chua’s circuit as the chaos generator.

(i) Secure communication via chaotic masking

The idea of chaotic masking has been proposed in Oppenheim et al. (1992);
Kocarev et al. (1992), where the information-carrying signal is added to the mask-
ing chaotic signal. Such an approach was used in an experimental setup for secure
communication, where Chua’s circuits were used as synchronizing blocks. Figure 6
shows a schematic diagram, in which the transmitter part is a Chua’s circuit and
the receiver part is two partial Chua’s circuits. The first subcircuit is a decoding
key and synchronizes only when exactly matched with the transmitter circuit, thus
reproducing the y; signal. The second subcircuit is used for obtaining the variable
z2 needed for recovering the information signal through subtraction as shown in the
diagram of figure 6.

(ii) Chaos shift keying

In the chaotic synchronization approach used above, the parameters in the trans-
mitter and in the receiver must be matched exactly. Slight parameter mismatch will
cause synchronization error to appear. This property is exploited in the chaos shift
keying scheme (Parlitz et al. 1992) where a binary signal is encoded in terms of two
different attractors existing for two different system parameter values. The transmit-
ter and receiver is similar to the chaotic masking scheme, but rather than adding
the information signal onto the chaotic signal, a waveform corresponding to one at-
tractor is transmitted when a ‘1’ occurs in the information stream and a waveform
corresponding to the other attractor is transmitted when a ‘0’ occurs in the informa-
tion stream. Although the two attractors appear similar, the receiver will synchronize
only to the attractor with the same parameter set. Whether the receiver synchronizes
or not determines whether a ‘1’ or a ‘0’ is transmitted. For a more reliable system,
a second receiver with the second parameter set can be used. The feasibility of this
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Figure 6. Diagram for secure communication system using chaotic masking.

approach for secure communication has been demonstrated experimentally in Parlitz
et al. (1992).

(iif) Spread-spectrum secure communication via chaotic masking

Halle et al. (1993) provide another approach for information transmission by mak-
ing use of the broad spectrum of the chaotic carrier signal. The transmitter and
the receiver each contain an identical Chua’s circuit. In the transmitter a current
signal I(t) is injected into the circuit to modify the voltage across capacitor C;. An
invertible coding function c is chosen so that I(t) = c(vs(t)) where vy(t) is the in-
put signal to be transmitted. The detected output signal Iy is then decoded from
v.(t) = ¢71(14(t)). In the spread spectrum scheme, the coding function is multiplica-
tion with the chaotic signal z(¢) which spreads the spectrum of the input signal. For
proper operation, it is necessary that v,(t) = v4(t) and the coding function should
be chosen in such a way that the transmitted signal remains chaotic. The voltage
across the capacitor C; is transmitted to the receiver circuit and is used as a forcing
voltage on the second Chua’s circuit capacitor C;. If all circuit components of the
transmitter and receiver are matched exactly, we have (Halle et al. 1993) I4(t) — I(t)
and v, (t) — vs(t) for ¢ — oo, which means that the current flowing into the second
Chua’s circuit will eventually equal the current injected into the first Chua’s circuit.
One of the features of this scheme is that when the transmitter and receiver are
completely matched and there is no distortion in the channel, then the information
signal can be recovered at the receiving end without any noise, whereas in figure 6,
there will be some residual noise in the receiver (s(t) 4 s(t)). For a dual scheme
which also has this noise-free property, see Wu & Chua (1993). The full account of

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

/,//’ \\
o \
( 2\

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\
AN

A

p

THE ROYAL A

a

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

A universal circuit for chaotic phenomena 79

the laboratory implementation of the transmission system can be found in Halle et
al. (1993).

(b) Using Chua’s circuit for recognition tasks

(i) Trajectory recognition via array of Chua’s circuits

Recently, Altman (1993) uses the centre manifold and normal form theory to re-
late the local behaviour of Chua’s circuit to some input trajectory to be recognized.
This mathematical problem arises in the recognition of hand gestures in the design
of artificial intelligence, where the hand position as a function of time is used to drive
Chua’s circuit to an attracting surface. Since Chua’s circuit is known to undergo a se-
ries of bifurcations from fixed points, to limit cycles, to a cascade of period-doubling
oscillations leading to chaotic oscillations in the vicinity of the centre manifold sur-
face, the rapid entrainment of the chaotic system to an external signal having a
trajectory near the centre manifold surface provides the basic mechanism for trajec-
tory recognition. The recognition of many trajectories can be achieved by using a
two-dimensional array of Chua’s circuits. In this case, the variation of responses to
the common input trajectory creates a spatial pattern which can be used to recognize
the input trajectory. The above approach to trajectory recognition is both novel and
fascinating.

(ii) Handwritten character recognition using Chua’s oscillator

A neural network architecture and learning algorithm for associative memory stor-
age of analogue patterns, continuous sequences, and chaotic attractors via a network
of Chua’s oscillators has recently been designed by Baird & Hirsch (1993). Their
design is used in the application to the problem of real-time handwritten digit recog-
nition. They have demonstrated that several of the attractors from Chua’s oscillator
have out-performed the previously studied Lorenz attractor system in terms of both
accuracy and speed of convergence.

(¢) Music from Chua’s circuit

While investigating Chua’s system, several distinct features were observed (Mayer-
Kress et al. 1993) that can be described in musical terms: the tendency to produce
pitch due to its isochronic behaviour, the simultaneous presence of noise along with
embedded periodic orbits, and sounds resembling the formant structures of acoustic
instruments. The interplay of these factors can create steady-state waveforms that
resemble steady-state portions of acoustic instrument sounds. Chua’s circuit has
parameter regions where noisy frequency- and amplitude-modulated sounds are gen-
erated, each of which is related to a certain transition to chaos, e.g. period-doubling,
intermittency, torus breakdown, etc. Interestingly, almost harmonic pitch changes
can be produced through a period-adding sequence of bassoon-like sounds. Transient
dynamics were found to be important in the context of percussion-like sounds.

The great variety of attractors that can be generated from Chua’s circuit makes
this circuit an excellent candidate for a universal signal-generating standard. These
properties have been succesfully used for sound synthesis and design (Mayer-Kress
et al. 1993; Rodet 1993) by tuning different circuit parameters (Zhong et al. 1994).
Rodet (1993) describes real-time simulations of Chua’s circuit on a digital worksta-
tion allowing for easy experimentation with the properties and behaviours of the
circuit and of the sounds. Rich and novel musical sounds have been obtained. Also,
the audification of the local properties of the parameter space allowed an easy de-
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termination of very complex structures which would not be simple to determine by
other ways.

In another set-up (Rodet 1993), the time-delayed Chua’s circuit was found to be
able to model the basic behaviour of an interesting class of musical instruments,
namely those of clarinet, consisting of a massless reed coupled to a linear system.
Other instruments are expected to be obtained from Chua’s circuit, e.g. brass, voice,
flute, and strings. A possibility of creating completely new electronic instruments
is considered in Mayer-Kress et al. (1993) where a method (convex sums of vector
fields) of generating new attractors that inherit the properties of parent attractors
is proposed.

(d) Unified framework for synchronization and control

Recently, there has been much interest in the dynamics of coupled chaotic circuits
and systems. Of particular interest is synchronization and control phenomena of
chaotic systems. As seen in §3 a applications based on chaotic sychronization such as
secure communication systems have emerged in recent years. In Wu & Chua (1994) a
unified framework was given to unify many of these ideas on chaotic synchronization
and control by relating them to asymptotic stability of related systems. We give the
main ideas here with regards to Chua’s oscillator. Detailed statements and proofs
can be found in Wu & Chua (1994).

The main theorem can be stated as follows:

Theorem 1. Consider the system

T = f(z,x,y,t), (4.1)
y = f(y’ w,yat)’ (42)

where x,y € R", and f is defined on R™ x R™ x R™ x R. Suppose that for every ()
and n,(t) continuous functions into R", the system

z=g(z,1) = f(z,m(t),m2(t),t) (4.3)
is uniform-asymptotically stable. Then |y(t) — x(t)|| — 0 as t — oo.

The main idea to achieve synchronization of two chaotic systems is to ‘extract’
the parts of the system such that the rest of the system is uniform-asymptotically
stable, and use the extracted parts as coupling. More precisely, we start off with
the system @ = g;(x,¢) which is chaotic. Next we decompose the arguments in
the vector field g; into four components such that it can be written as g,(x,t) =
f(z,z,x,t). The decomposition is chosen in such a way that the system & =
ga2(x,t) = f(x,m(t),n2(t),t) is asymptotically stable for all n;(t) and ny(t). The
second and third arguments to f is the ‘extracted’ part. When we couple two iden-
tical systems as in equations (4.1)—(4.2), the two systems will synchronize so that
they are decoupled at the synchronized state.

For the class of systems which has vector fields with uniformly bounded Jacobians,
strong enough linear coupling between two identical systems will cause them to be
globally synchronized. In Chua’s oscillator for the standard parameters values, the
only active element is the nonlinear resistor. Therefore taking that part out of the
system, the resulting system will consist of linear passive elements and is uniform-
asymptotically stable. Applying this to two coupled Chua’s oscillators we obtain the
following result where the coupling is separable:
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Proposition 1. Consider the system:

j.;—_—a(y—a:—f(:lt)+g1(53)—g1(3?)),

Yy=x—-y+z,
Z:"By—’%’«“,
&=a(f-2- f&)+ 9@ —g)),
y=i-7+%
Z=—py—nz

Suppose o, 3,y > 0. If the function f + g1 + go is strictly increasing, then

T T
g l—=1y
Z z

ast — 00.

In linear diffusive coupling, g; and g2 are chosen to be multiplication by a positive
constant, i.e. g;(z) = ¢;z. If f(x) is the piecewise-linear function f(z) = bz + L(a —
b)[lz + 1| — |z — 1]], then ¢; + ¢2 > max(—a, —b) will cause the coupled system to
synchronize.

Certain schemes of controlling trajectories of chaotic systems to lie on unstable
periodic cycles can also be cast into this framework, where we take g; = 0, and take
the first system to be moving along the unstable periodic cycle. Because there is no
coupling from the second system to the first system, the first system can be replaced
by a memory device which recalls a particular (unstable) trajectory of the system
(Pyragas 1993).

In Wu & Chua (1994) it was also shown that synchronization between two Chua’s
oscillators in master-slave configuration is robust. Strictly speaking, when the con-
ditions of Proposition 1 are satisfied with g; = 0, arbitrarily small changes in the
component values Ci, Cy, R, L, Ry (which result in arbitrarily small changes in
a, B, 7) in one of the systems will result in arbitrarily small synchronization er-
ror. This result suggests that practical physical implementations where parameter
mismatches are unavoidable will still synchronize approximately. Moreover, in Wu
& Chua (1995a) it was shown that in an array of identical Chua’s oscillators un-
der standard parameter values, if the array is connected together via linear resistors
(of resistance R,) across the nonlinear resistors, the array will synchronize for small
enough R..

5. Conclusion

Chua’s oscillator has proved to be an excellent paradigm for the generation of a
multitude of different dynamical phenomena. Because of its generality, many more
phenomena can be observed in addition to those in Chua’s circuit, as it corresponds
to a global unfolding of Chua’s circuit, encompassing almost all three-dimensional,
piecewise-linear, continuous, three-region, odd-symmetric systems by being topolog-
ically conjugate, for suitable parameter values, to any such vector field (except for a
set of measure zero). Beside Chua’s oscillator, individual vector fields which are con-
tinuous, odd-symmetric, three-region, and piecewise-linear, can be generated by the
members of Chua’s circuit family (Wu 1987). Many members of Chua’s circuit family
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have been synthesized and built. Except for the canonical circuit reported in Chua
& Lin (1990), the dynamics of the circuits, including the original Chua’s circuit are
not sufficiently general in the sense that certain phenomena observed from one such
member of Chua’s circuit family cannot be observed from another member, regard-
less of the choice of circuit parameters. From the circuit-theoretical point of view, it
is desirable to synthesize the simplest circuit topology which is capable of reproduc-
ing the qualitative phenomena exhibited by every member of Chua’s circuit family.
Chua’s oscillator was shown to meet these requirements, so that its significance can
be summarized as follows:

Chua’s oscillator is structurally the simplest and dynamically the most complex mem-
ber of Chua’s circuit family.

The significance of Chua’s oscillator transcends beyond nonlinear circuit theory. It
can be used successfully to mimic the behaviour of other three-dimensional dynamical
systems, both piecewise-linear and smooth. Chua’s oscillator has unified the nonlinear
dynamics of the entire 21-parameter family of piecewise-linear vector fields into a
single system defined by equation (1.1), hence it is not necessary for beginners in
nonlinear dynamics to study all those papers with diverse notations and jargons.
Furthermore, Wu & Chua (1995b) show that this unification can be extended to the
class of Luré systems.

Even more significantly, arrays of Chua’s oscillators appear to be a suitable can-
didate for important applications ranging from image processing to the simulations
of biological processes. The building of the monolithic IC chip of Chua’s circuit
(Rodriguez-Vazquez & Delgado-Restituto 1993; Cruz & Chua 1993) is an important
step toward building large arrays via VLSI technology, and will make it possible
to reproduce, in real time, almost all reaction-diffusion situations, described in the
literature with a relatively simple low-cost system.

This work was supported in part by the Office of Naval Research under grant N00014-89-J-1402,
by the National Science Foundation under grant MIP 86-14000, the Joint Services Electronics
Program under contract no. F49620-94-C-0038, and by the Josephine de Kérman Fellowship.
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